Amazon cover image
Image from Amazon.com
Image from Google Jackets

Modern Developments in Transcranial Magnetic Stimulation (TMS) - Applications and Perspectives in Clinical Neuroscience

Material type: TextTextLanguage: English Publication details: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022Description: 1 online resource (286 p.)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783036543970
  • 9783036543987
  • books978-3-0365-4397-0
Subject(s): Online resources: Summary: Transcranial magnetic stimulation (TMS) is being increasingly used in neuroscience and clinics. Modern advances include but are not limited to the combination of TMS with precise neuronavigation as well as the integration of TMS into a multimodal environment, e.g., by guiding the TMS application using complementary techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), diffusion tensor imaging (DTI), or magnetoencephalography (MEG). Furthermore, the impact of stimulation can be identified and characterized by such multimodal approaches, helping to shed light on the basic neurophysiology and TMS effects in the human brain. Against this background, the aim of this Special Issue was to explore advancements in the field of TMS considering both investigations in healthy subjects as well as patients.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Open Access Unrestricted online access star

Transcranial magnetic stimulation (TMS) is being increasingly used in neuroscience and clinics. Modern advances include but are not limited to the combination of TMS with precise neuronavigation as well as the integration of TMS into a multimodal environment, e.g., by guiding the TMS application using complementary techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), diffusion tensor imaging (DTI), or magnetoencephalography (MEG). Furthermore, the impact of stimulation can be identified and characterized by such multimodal approaches, helping to shed light on the basic neurophysiology and TMS effects in the human brain. Against this background, the aim of this Special Issue was to explore advancements in the field of TMS considering both investigations in healthy subjects as well as patients.

Creative Commons https://creativecommons.org/licenses/by/4.0/ cc

https://creativecommons.org/licenses/by/4.0/

English

There are no comments on this title.

to post a comment.
Share

Visitor Counter

Visit counter For Websites